Demo

You entered the OD groupoid family symbol: cmm(m) { n_(1+s,2) n_(2,1+r) (n_(r,s))}

The OD groupoid family parsed fine.

General OD Family Symbol

cmm (m)  
2r'2s'22
ns',2n2,r'nr',s'
21+r'21+s'n1+r',1+s'
n1+s',2n2,1+r'

Reduced general OD Family Symbol

cmm (m)  
2r'2s'22
ns',2n2,r'nr',s'
21+r'21+s'n1+r',1+s'
n1+s',2n2,1+r'

General Data

OD family of layers

Kinds of layers:N=1
Category:I (single)
Pointgroup:mmm (D2h)
Crystal system:orthorhombic
Layer system:rectangular
Common lattice:same
Common lattice size (rel. to global):1
Layer planes:(001)
c0(0,0,1)
Global lattice restriction:ab=0
User supplied lattice restriction:none
Lattice restriction derived from layers:ab=0

Layer Data

Layer 0:

Type:Layer group
Symbol:cmm(m)
Crystal system:orthorhombic
Layer system:rectangular
Polarity:non-polar
Lattice restriction (instrinsic):ab=0
Lattice restriction (extrinsic):ab=0
Lattice (rel. to global):same
Lattice (rel. to common):same
Lattice size (rel. to global):1
Lattice size (rel. to common):1
Order (modulo lattice):16
Order (modulo global lattice):16
Order (modulo common lattice):16
Floating origin:0,0,0

Symmetry operations:

x,y,z1
-x,y,zm
x,-y,zm
x,y,-zm
x+1/2,y+1/2,ztC
-x,-y,z2
-x,y,-z2
-x+1/2,y+1/2,zb
x,-y,-z2
x+1/2,-y+1/2,za
x+1/2,y+1/2,-zn
-x+1/2,-y+1/2,-z1
-x,-y,-z1
-x+1/2,-y+1/2,z2
-x+1/2,y+1/2,-z21
x+1/2,-y+1/2,-z21

Special positions:

x,y,z
0,y,z
x,0,z
x,y,0
0,0,z
0,y,0
x,0,0
1/4,1/4,0
0,0,0
1/4,1/4,z

Centring vectors:

(1/2,1/2,0)

Special parameters

Special parameters for σ-POs (right)

  1. (general, reduced)
    Codes: general, reduced
    1. No subparameters.
  2. r'=r+l''+l''', s'=s+l''-l''', l'',l'''∈ℤ (user)
    Codes: user-1, user-2, user-3, user-4, user-5, user-6, user-7, user-8
    1. l''=0, l'''=0
  3. r'=n, n∈ℤ (special)
    Codes: nfz1-2-2 (m [100] 0,y,z)
    1. n=0
    2. n=1
  4. s'=n, n∈ℤ (special)
    Codes: nfz1-3-3 (m [010] x,0,z)
    1. n=0
    2. n=1
  5. r'=m/2+n/2, s'=m/2-n/2, m,n∈ℤ (special)
    Codes: nfz1-5-5 (2 [001] 0,0,z)
    1. m=0, n=0
    2. m=1, n=0
    3. m=0, n=1
    4. m=1, n=1